A Geometric Optimization Approach to Detecting and Intercepting Dynamic Targets Using a Mobile Sensor Network
نویسندگان
چکیده
A methodology is developed to deploy a mobile sensor network for the purpose of detecting and capturing mobile targets in the plane. The sensing-pursuit problem considered in this paper is analogous to the Marco Polo game, in which a pursuer Marco must capture multiple mobile targets that are sensed intermittently, and with very limited information. The competing objectives exhibited by this problem arise in a number of surveillance and monitoring applications. In this paper, the mobile sensor network consists of a set of robotic sensors that must track and capture mobile targets based on the information obtained through cooperative detections. When these detections form a satisfactory target track, a mobile sensor is switched to pursuit mode and deployed to capture the target in minimum time. Since the sensors are installed on robotic platforms and have limited range, the geometry of the platforms and of the sensors’ fields-of-view play a key role in obstacle avoidance and target detection. A new cell-decomposition approach is presented to determine the probability of detection and the cost of operating the sensors from the geometric properties of the network and its workspace. The correctness and complexity of the algorithm are analyzed, proving that the termination time is a function of the network parameters and of the number of required detections.
منابع مشابه
A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 48 شماره
صفحات -
تاریخ انتشار 2009